Rolling stock spare parts inventory management

Provide the highest level of service to customers at the lowest total cost

Goals of inventory management

- Provide the highest possible level of service to end customers at the lowest total cost.
- Prevent delays and cancellations.
- Maintain a high state of readiness with trains free of maintenance issues.
- Ensure part availability to the maintenance function, optimize preventive maintenance and reduce the impact of stoppages.
- Conflicting financial and operational goals
 - → Inventory fill rate (EOQ)
 - → Minimum Equipment List
 - → Efficient use of maintenance personnel

Goals hierarchy in transportation systems inventory management

Efficient spare parts management

Rules for efficient SPM

- Champion preventive maintenance
- Eliminate process flaws along the Supply Chain
- Segment the spare parts portfolio
- Evaluate spare parts criticality
- Forecasting is key to spare parts management
- Use special methods for intermittent demand items and emergencies.
- Consider the whole life cycle of the equipment.
- Implement an appropriate information system for spare parts and maintenance inventory management.

Enhance preventive maintenance

Forecast

- What will we need? When? Where?
- Typical process flaws:
 - Substantial uncontrolled spend spread across multiple sites and categories.
 - Duplicate SKUs, some being used only on certain equipment and/or location.
 - Unpredictable demand with high % of items turn less than once every two years.
 - A "just in case" mindset, buying more than is needed.
 - A large number of vendors, including many local vendors at individual sites.
 - Spot buys of unplanned purchases.
 - Data management challenges myriad number of specs, part numbering, systems, Excel files and more.

Need identification

- Generated by planned and un-planned maintenance.
- Typical process flaws:
 - No direct responsibility of maintenance engineers/technicians for "their" items and spare parts levels.

Requisition

- Formalization of identified need, to make it visible to relevant stakeholders.
- Typical process flaws:
 - Requisition created by someone else than the technician who had identified the need.
 - Creation of the requisition may not be necessary in the process. This is the case for low value, sporadic items. Emergencies.
 - The requisition could be automated for planned maintenance based on adjusted forecast.

Requisition approval

- Requisition should reflect needs and respect budget.
- Typical process flaws:
 - How often are RFOs approved? Who approves?
 - Is RFO approved by means of IS workflow or by signing a paper copy?
 - Alternatively, are both ways needed?
 - After RFO is approved, the issued order must be approved again.
 - Too many approvers, complicated approval procedure and hierarchy of responsibilities.
 - Approving on high levels of management.

Procurement

- PO placement to an approved supplier
- Typical process flaws:
 - Insufficient information available to procurement.
 - Poor spare parts identification the buyer hardly knows what should be bought, additional communication with maintenance technician is needed.
 - Missing or incomplete procurement specification in the IS.

Reception

- Ensure the right goods are received and compliant to specifications.
- Typical process flaws:
 - Problems with missing (undelivered) documentation for the received material (certificates, declarations).
 - Only "paper-based" archiving of spare parts documentation.
 - o Problems to find documentation when needed.

Warehousing

- Store parts at the right place in the right conditions
- Typical process flaws:
 - Insufficient identification of spare parts in the warehouse.
 - Problems with finding items stored in the warehouse.
 - Inventory count discrepancies, physical stock different from information system data.
 - Non-real value of stock in the information system.
 - Existence of out-of-system stocks.

Issuance

- Issue the right quantity of the required parts at the adequate point of use
- Typical process flaws:
 - Wrong parts, wrong quantity, wrong spot
 - Slow spare part issues in case of sudden need.
 - Parts withdrawn and not accounted for in the system.

Consumption

- Parts are used to maintain the corresponding asset and put it back into operations.
- Typical process flaws:
 - Issued spare parts are not consumed in fact. What happens then?
 - Consumption of external material even when the part is on stock (Maverick buying).

Back flow

- Warehouse returns and refurbished parts.
- Typical process flaws:
 - Refurbished parts returned to warehouse while new are bought.
 - Accounting price of refurbished items is much higher (or lower) than the non-realistic value of items on stock.
 - Problematic or impossible returns of parts issued but not consumed.
 - Insufficient control of parts dismantled from the maintained asset (the information system has no information about these).

Segment SP portfolio: Inventory classification and characteristics

- Rotable: Part that can be economically restored repeatedly to a fully serviceable condition.
- Repairable: Same as rotable with the difference of a higher scrap rate.
- Expendable: Single use with 100% scrap rate.
- Recoverable: A repairable with a high scrap rate or an expandable that can be repaired sometimes with a process.
- Consumable: used in time with 100% scrap rate.

Inventory classification and characteristics

Evaluate spare parts criticality

- Criticality is a measure of risk in spare parts supply chain.
- Traditional risk assessment techniques apply.
- Risk level = likelihood of occurrence x Impact
- For spare parts:
 Probability of failure x Cost of down time x lead time
- To be compared with Total Holding Cost
- Risk control in such case consist in applying different inventory management rules: Holding stock or not, Min-Max, with or without safety stock at an appropriate level, VMI, ...

Evaluate spare parts criticality

Spare parts forecasting

- Spare parts forecasting always turns out to be a subtle balance of quantitative methods and common sense.
- Sources for spares provisioning data are numerous:
 - Data from OEM's.
 - Operational data from another user with the same or similar fleet/equipment.
 - Data from an MRO partner for spares provisioning and repair/overhaul.
 - Data from industry experts or consultants.
- Age of the fleet/equipment is a key driver.

Spare parts forecasting

Quantitative Common methods sense

Spare parts forecasting

Special methods for intermittent demand items and emergencies

- Continuously assess where intermittent demand items could be found and possibly secure relationships with preapproved vendors.
- Make provision for emergency buying with special approval process/Threshold.
- Enforce regularization after the fact to ensure appropriate control levels.
- Ensure to maintain an up-to-date specific set of preapproved emergency vendors.
- Consider the use of P-cards for low value standard items.

Consider the whole life cycle of the equipment

New vs. aging fleet

Inventory performance metrics

- Inventory Performance Metrics are important because they will allow to gauge the performance of IMS.
- A properly designed set of metrics will allow diagnosis of inventory issues and identification or evaluation of possible areas of improvements.
- Like any system, IMS will benefit from a robust continuous improvement process.
- Metrics will serve to place an objective measurement on planning performance and part delivery processes.
- ERP implementation will provide an appropriate information system for spare parts and maintenance inventory management.

Inventory performance metrics

- Service Levels: Delays and cancellations attributed to parts availability. Stoppage events and Elapsed time to recovery.
- Fill Rate = Number of Filled Requests for Parts/Total Parts Requests.
- Backorders
- Inventory turnover
- Inventory turns per year for each component
- Repair Turn Around Time or TAT of each component
- Scrap Rates of each component
- Replenishment Lead Times
- No Fault Found Rates

Thank you

Questions? Next steps